Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Over six decades of research on wild baboons and their close relatives (collectively, the African papionins) has uncovered substantial variation in their behavior and social organization. While most papionins form discrete social groups (single-level societies), a few others form small social units nested within larger aggregations (multi-level societies). To understand the social processes that shape this variation, a more systematic, comparative analysis of social structure is needed. Here, we constructed a database of behavioral and demographic records spanning 135 group-years across 13 long-term papionin field studies to (i) quantify variation in grooming network structure, and (ii) identify the factors (e.g., sex, kinship, and social status effects) that underlie these differences. We detected considerable variation in grooming network structure across the papionins, even within the classic single-level societies. The papionins could be best divided into three broad categories: single-levelcohesive, single-levelcliquish, andmulti-level. The cohesive single-level societies formed networks that were dense, moderately kin-biased, and weakly rank-structured, while the cliquish single-level societies formed networks that were relatively modular, highly kin-biased, and more strongly rank-structured. As expected, multi-level networks were highly modular and shaped by females’ ties to specific dominant males but varied in their kin biases. Taken together, these data suggest that: (i) discrete typologies obscure variation in social structure; and (ii) similarities in social structure are sometimes, but not always, shaped by similar social processes. SIGNIFICANCE STATEMENTDo all primate groups fit the same social mold? While factors like kinship and dominance shape the social lives of many of our close relatives, it remains unclear how their effects differ across species. Using a new database representing decades of field research, we found that baboons and their close relatives fell into one of three general patterns: one in which groups were cohesive and only somewhat nepotistic (i.e., kin- and rank-biased), another in which groups were more cliquish and nepotistic, and a final pattern in which groups were divided into clusters centered on dominant males. Distinct primate societies may thus reflect differences in the strength of females’ social biases towards kin and the degree of males’ social influence.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how “genomic signatures of selection” (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.more » « less
-
Some social animals are highly cooperative creatures that live in tight-knit colonies. Bees and ants are perhaps the most well-known examples of social insects, while Damaraland mole-rats and naked mole-rats, two rodent species found in southern and eastern Africa, are among the most cooperative mammal species. In these colony-forming animals, only one or a few females reproduce and these fertile females are frequently referred to as “queens”. When an animal becomes a queen, her body shape can change dramatically to support the demands of high fertility and frequent reproduction. The molecular basis of such changes has been well-described in social insects. However, they are poorly understood in mammals. To address this knowledge gap, Johnston et al. studied how transitioning to queen status affects bone growth and structural integrity in Damaraland mole-rats, as well as body shape and size. The experiments compared non-breeding female mole-rats with other adult females recently paired with a male to become the sole breeder of a new colony. Johnston et al. also used bone-derived cells grown in the laboratory to assess underlying gene regulatory changes in new queen mole-rats. Johnston et al. showed that transitioning to the role of queen leads to a cascade of skeletal changes accompanied by shifts in the regulation of genetic pathways linked to bone growth. Queen mole-rats show accelerated growth in the spinal column of their lower back. These bones are called lumbar vertebrae and this likely allows them to have larger litters. However, queen mole-rats also lose bone growth potential in their leg bones and develop thinner thigh bones, which may increase the risk of bone fracture. Therefore, unlike highly social insects, mole-rats do not seem to have escaped the physical costs of intensive reproduction. This work adds to our understanding of the genes and physical traits that have evolved to support cooperative behaviour in social animals, including differences between insects and mammals. It also shows, with a striking example, how an animal’s genome responds to social cues to produce a diverse range of traits that reflect their designated social role.more » « less
-
Experiences early in life can have lasting effects on the health and survival of humans and other creatures. Whether early hardships can also influence the wellbeing of the next generation is less clear. One previous study with captive hamsters suggested that adversity early in the life of a mother may indeed shorten how long her offspring will live. But hamsters only live for a few years and much less is known about the possibility for intergenerational effects in animals with longer lifespans. This is partly because such studies are time-consuming and thus more difficult to complete. Over the past 45 years, scientists have collected data on generations of baboons living in and around the Amboseli National Park in southern Kenya. Baboons live in social groups with a strict hierarchy, and individuals can live for up to 30 years in the wild. Previous research has shown that early life adversity – such as being orphaned or simply having a low-ranking mother – can shorten the lifespan of female baboons even if they make it to adulthood. It was unclear, however, whether these ill effects could be passed on to the next generation. Now, Zipple et al. have used the wealth of data about the Amboseli baboons to find the answer. After taking into account any adversity that each baboon experienced directly, Zipple et al. showed that juvenile baboons whose mothers were orphaned before reaching adulthood were 44% more likely to die young than juveniles whose grandmothers survived during their mother’s early years. Baboons whose mothers had a close-in-age younger sibling were also 42% more likely to die early as compared to those whose mothers did not, perhaps because the younger sibling competed with the mother for access to maternal care. The analysis suggests that early life adversity in female baboons can have intergenerational effects. More studies are needed to determine if this is also true of humans. If it is, such a result may help explain the persistence of poor health outcomes across generations and shed light on how best to intervene to interrupt this transmission.more » « less
-
null (Ed.)Abstract Is it possible to slow the rate of ageing, or do biological constraints limit its plasticity? We test the ‘invariant rate of ageing’ hypothesis, which posits that the rate of ageing is relatively fixed within species, with a collection of 39 human and nonhuman primate datasets across seven genera. We first recapitulate, in nonhuman primates, the highly regular relationship between life expectancy and lifespan equality seen in humans. We next demonstrate that variation in the rate of ageing within genera is orders of magnitude smaller than variation in pre-adult and age-independent mortality. Finally, we demonstrate that changes in the rate of ageing, but not other mortality parameters, produce striking, species-atypical changes in mortality patterns. Our results support the invariant rate of ageing hypothesis, implying biological constraints on how much the human rate of ageing can be slowed.more » « less
-
Abstract ObjectivesPregnancy failure represents a major fitness cost for any mammal, particularly those with slow life histories such as primates. Here, we quantified the risk of fetal loss in wild hybrid baboons, including genetic, ecological, and demographic sources of variance. We were particularly interested in testing the hypothesis that hybridization increases fetal loss rates. Such an effect would help explain how baboons may maintain genetic and phenotypic integrity despite interspecific gene flow. Materials and MethodsWe analyzed outcomes for 1020 pregnancies observed over 46 years in a natural yellow baboon‐anubis baboon hybrid zone. Fetal losses and live births were scored based on records of female reproductive state and the appearance of live neonates. We modeled the probability of fetal loss as a function of a female's genetic ancestry (the proportion of her genome estimated to be descended from anubis [vs. yellow] ancestors), age, number of previous fetal losses, dominance rank, group size, climate, and habitat quality using binomial mixed effects models. ResultsFemale genetic ancestry did not predict fetal loss. Instead, the risk of fetal loss is elevated for very young and very old females. Fetal loss is most robustly predicted by ecological factors, including poor habitat quality prior to a home range shift and extreme heat during pregnancy. DiscussionOur results suggest that gene flow between yellow and anubis baboons is not impeded by an increased risk of fetal loss for hybrid females. Instead, ecological conditions and female age are key determinants of this component of female reproductive success.more » « less
An official website of the United States government
